

OKCon 2011

What kind of a commons
is free software?

Miguel Said Vieira

PhD student (Philosophy of Education),
University of São Paulo / Scientiae Studia

Epidemia Collective

Outline

1.Commons studies

2.Immaterial commons

3.Proposal; two layers of analysis (free software)

1.Use

2.Development

4.Examples, some final thoughts

Commons studies

 Commons: community sharing things
 Debate regarding free software [FS]:

open access, or managed commons?
 open access: freedoms in FS licenses
 managed: empirical studies show communities are

structured, and follow some principles and norms

 Importance of the question: most traditions
consider open access as “non-commons”

Neoinstitutional approach

 Most renowned / successful approach
 Elinor Ostrom: Nobel Prize in Economics
 strong influence from neoinstitutional economics

 Ostrom disproved Hardin's
“Tragedy of the Commons”:
 commons are not doomed to overuse
 “soft” methodological individualism
 empirical studies; led to design principles
 open access: lack boundaries, rules;

thus, should not be sustainable

Immaterial commons

 Ostrom's work: small-scale, material commons;
what about the sharing of knowledge?

 Economists' typology of goods:
immaterial = public good
 not easily excludable, also not rival;

(material commons: not excludable, but rival)
 Nina Paley's Copying Is Not Theft
 that could explain why open access works here.

 But... there's always a “but”. :-)

Rivality, excludability:
intrinsic characteristics?

 Rivality, excludability:
 are not binary variables, but a continuum
 are also not absolute givens

 Change in time and space (for the same good)
 time: a software now and 30 years ago (TeX, e.g.)
 space: a software in Silicon Valley and in Africa

 Historical and social codetermination
 Methodological individualism coupled with

essentialist approach to material world: problems

Alternative approaches;
commoning

 Peter Linebaugh, marxist historian:
“there's no commons without commoning”
 focus on the social bonds and political struggles

from which commons (or enclosure) arise
 less mechanistic view of community / goods relation

 Broader view; might “scale” better to analyse
larger commons, or their fit in capitalist society

 But: still not as systematic as the
neoinstitutional approach (far from it)

Two layers of analysis

1.Use in general

2.Development

● They're interdependent
● There is some flow (and overlap) between them

● but also differences, from a commons perspective

Dual nature of (free) software

 Source code / machine code
 Machine code performs the software's functions
 ...but software is developed in source code

 My proposal for looking to free software from a
commons perspective mirrors this duality

First layer:
use in general

 Wider layer
 use is central; may include modification practices,

but not in a systematic way

 Community: everyone that uses the software
 Resource pool: all pieces of software under

FSD/OSD licenses
 forms a single commons

 Governance: mostly based on the freedoms
granted by the licenses
 freedom 0 (to use) as a baseline

First layer:
what kind of commons?

 For the most part, this layer is open access
 there are rules “only” when there's redistribution

(but: redistribution is prerequisite to sharing)

 However, abiding by rules depends only on the
will of the commoner-to-be
 membership is not refused based on ad-hoc rules,

or on limits to the size of the community
 intensional definition of community

(vs. extensional definition, in material commons)

Second layer: development

 Expanded notion of development:
 documenting, evangelizing, bug-testing, translating

 Still, communities are subset of previous layer's
 Resource pool: each individual FS project

 multiple commons (and drivers, needs, principles)

 Governance less based on licenses;
more on other systems of rules (formal or not)
 Debian Social Contract / Constitution
 informal rules at play all the time; meritocracy, i.a.

Second layer:
what kind of commons?

 Managed commons; effective participation can
be restricted (criteria vary in each commons)
 many different levels of participation and authority

 Values and principles underpinning those rules
also can vary a lot
 Debian mixes meritocracy, democratic procedures

and formal authority

Android as example of
closed management (2nd layer)

 Software stack, includes Linux and non-free sw
 “explicitly open source (as opposed to FS)”

 but even source is not always open...

 Project is quite open for apps' developers,
but very closed for handset producers

 Google employees in gate-keeping positions
 criteria for accepting code is not only meritocracy,

but also “alignment with Android strategy”
 Conflict with interests of the 1st layer's community?

Forking:
example of interdependence

 Right to fork is formally in the 1st layer's rules
 But its legitimacy is determined on the ground,

according to 2nd layer's rules
 2nd layer community might refuse to cooperate

(severe split between communities)

 In a way, what's pooled in the 2nd layer is also
developer's hours of work
 much more rival than software!

Final thoughts

 Methodological remark: “nested enterprises”?
 but what Ostrom refers to is somewhat different

 FS as a commons is open access for use
 but excessive focus on this can overshadow

importance of the development layer
 defines projects' directions, and

decides whose interests will be cared for
 must be gradually, cyclically “taken over”, or we'll

reinforce a problematic user-producer divide that
mirrors other inequalities and power asymmetries

WIP: comments highly appreciated!

Thanks / Obrigado

msaid@usp.br
http://impropriedades.wordpress.com/

[in Portuguese]

http://impropriedades.wordpress.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

